Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity.
نویسندگان
چکیده
The activity of the endothelial nitric oxide synthase (eNOS) can be regulated independently of an increase in Ca(2+) by the phosphorylation of Ser(1177) but results only in a low nitric oxide (NO) output. In the present study, we assessed whether the agonist-induced (Ca(2+)-dependent, high-output) activation of eNOS is associated with changes in the phosphorylation of Thr(495) in the calmodulin (CaM)-binding domain. eNOS Thr(495) was constitutively phosphorylated in porcine aortic endothelial cells and was rapidly dephosphorylated after bradykinin stimulation. In the same cells, bradykinin enhanced the phosphorylation of Ser(1177), which was maximal after 5 minutes, and abolished by the CaM-dependent kinase II (CaMKII) inhibitor KN-93. Bradykinin also enhanced the association of CaMKII with eNOS. Phosphorylation of Thr(495) was attenuated by the protein kinase C (PKC) inhibitor Ro 31-8220 and after PKC downregulation using phorbol 12-myristate 13-acetate. The agonist-induced dephosphorylation of Thr(495) was completely Ca(2+)-dependent and inhibited by the PP1 inhibitor calyculin A. Little CaM was bound to eNOS immunoprecipitated from unstimulated cells, but the agonist-induced dephosphorylation of Thr(495) enhanced the association of CaM. Mutation of Thr(495) to alanine increased CaM binding to eNOS in the absence of cell stimulation, whereas the corresponding Asp(495) mutant bound almost no CaM. Accordingly, NO production by the Ala(495) mutant was more sensitive to Ca(2+)/CaM than the aspartate mutant. These results suggest that the dual phosphorylation of Ser(1177) and Thr(495) determines the activity of eNOS in agonist-stimulated endothelial cells. Moreover, the dephosphorylation of Thr(495) by PP1 precedes the phosphorylation of Ser(1177) by CaMKII. The full text of this article is available at http://www.circresaha.org.
منابع مشابه
Phosphorylation of Thr Regulates Ca/Calmodulin- Dependent Endothelial Nitric Oxide Synthase Activity
The activity of the endothelial nitric oxide synthase (eNOS) can be regulated independently of an increase in Ca by the phosphorylation of Ser but results only in a low nitric oxide (NO) output. In the present study, we assessed whether the agonist-induced (Ca-dependent, high-output) activation of eNOS is associated with changes in the phosphorylation of Thr in the calmodulin (CaM)-binding doma...
متن کاملOxidized low-density lipoprotein increases superoxide production by endothelial nitric oxide synthase by inhibiting PKCalpha.
OBJECTIVE Oxidized low-density lipoprotein (ox-LDL) increases superoxide anion (O(2)(-)) production by the endothelial nitric oxide (NO) synthase (eNOS). We assessed whether the uncoupling of eNOS was associated with alterations in eNOS phosphorylation and/or the assembly of the eNOS signaling complex. METHODS AND RESULTS In unstimulated human endothelial cells, eNOS Thr(495) was constitutive...
متن کاملMolecular mechanisms involved in the regulation of the endothelial nitric oxide synthase.
The endothelial nitric oxide synthase (eNOS), the expression of which is regulated by a range of transcriptional and posttranscriptional mechanisms, generates nitric oxide (NO) in response to a number of stimuli. The physiologically most important determinants for the continuous generation of NO and thus the regulation of local blood flow are fluid shear stress and pulsatile stretch. Although e...
متن کاملHydrogen peroxide activates endothelial nitric-oxide synthase through coordinated phosphorylation and dephosphorylation via a phosphoinositide 3-kinase-dependent signaling pathway.
Endothelial nitric-oxide synthase (eNOS) is an important component of vascular homeostasis. During vascular disease, endothelial cells are exposed to excess reactive oxygen species that can alter cellular phenotype by inducing various signaling pathways. In the current study, we examined the implications of H(2)O(2)-induced signaling for eNOS phosphorylation status and activity in porcine aorti...
متن کاملEndothelial nitric oxide synthase activity is inhibited by the plasma membrane calcium ATPase in human endothelial cells.
AIMS Nitric oxide (NO) plays a pivotal role in the regulation of cardiovascular physiology. Endothelial NO is mainly produced by the endothelial nitric oxide synthase (eNOS) enzyme. eNOS enzymatic activity is regulated at several levels, including Ca(2+)/calmodulin binding and the interaction of eNOS with associated proteins. There is emerging evidence indicating a role for the plasma membrane ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 88 11 شماره
صفحات -
تاریخ انتشار 2001